An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention
نویسندگان
چکیده
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen.
منابع مشابه
Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study.
The identification of brain systems contributing to different aspects of visuospatial attention is of both clinical and theoretical interest. Cued target detection tasks provide a simple means to dissociate attentional subcomponents, such as alerting, orienting or reorienting of attention. Event-related functional magnetic resonance imaging (fMRI) was used to study neural correlates of these di...
متن کاملInvestigating the Effect of Music on Spatial Learning in a Virtual Reality Task
Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...
متن کاملThe neural circuitry underlying the executive control of auditory spatial attention.
Although a fronto-parietal network has consistently been implicated in the control of visual spatial attention, the network that guides spatial attention in the auditory domain is not yet clearly understood. To investigate this issue, we measured brain activity using functional magnetic resonance imaging while participants performed a cued auditory spatial attention task. We found that cued ori...
متن کاملEvent-Related Potentials of Bottom-Up and Top-Down Processing of Emotional Faces
Introduction: Emotional stimulus is processed automatically in a bottom-up way or can be processed voluntarily in a top-down way. Imaging studies have indicated that bottom-up and top-down processing are mediated through different neural systems. However, temporal differentiation of top-down versus bottom-up processing of facial emotional expressions has remained to be clarified. The present st...
متن کاملDissociating top-down attentional control from selective perception and action.
Research into the neural mechanisms of attention has revealed a complex network of brain regions that are involved in the execution of attention-demanding tasks. Recent advances in human neuroimaging now permit investigation of the elementary processes of attention being subserved by specific components of the brain's attention system. Here we describe recent studies of spatial selective attent...
متن کامل